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Using Value-at-Risk to Control Risk Taking: How Wrong Can You Be?

Abstract

We study a source of bias in value-at-risk estimates that has not previously been recognized.
Because value-at-risk estimates are based on past data, a trader will often have a good
understanding of the errorsin the value-at-risk estimate, and it will be possible for her to choose
portfolios for which she knows that the value-at-risk estimate is less than the “true” value at risk.
Thus, the trader will be able to take on more market risk than risk limits based on value-at-risk
permit. Biases can also arise if she does not have a good understanding of the errors, but uses the
estimated covariance matrix to achieve certain portfolio objectives. We assess the magnitude of
these biases for three different assumptions about the motivations and behavior of the trader and
find that in all cases, value-at-risk estimates are systematically downward biased. 1n some
circumstances the biases can be very large. Our study of the distributions of the biases also
suggests a way to adjust the estimates to “ correct” the biases.



Using Value-at-Risk to Control Risk Taking: How Wrong Can You Be?

Therisk measurement technique known as value-at-risk has recently become a standard
approach for measuring the market risk of financial and commodity derivative instruments, and
other financial instruments. Value-at-risk modes provide a probabilistic measure of the *“ market
risk” of a portfolio of financial instruments, i.e. the risk that the market value of a portfolio of
financial instruments will change as aresult of changes in interest rates, foreign currency exchange
rates, commodity prices, or equity prices. Specifically, value-at-risk models measure the loss that
will be exceeded with a specified probability over a specified time horizon. For example, if the
specified probability is 5 percent and the time horizon is one day, then a value-at-risk of $1 million
means that the daily mark-to-market loss will exceed $1 million with a probability of only 5
percent. These models have recently become popular because market risk is a key concern of
companies senior managers, investors, and regulators, and the modd s aggregate the several
components of market risk into a single summary measure.

Value-at-risk is used for controlling traders and risk management staff (e.g., setting
position and trading limits), determination of capital requirements, performance evaluation, and
disclosure to both internal (senior management and/or the board of directors) and external
constituencies (regulators and investors). Currently, value-at-risk is regarded as “ best practice’ for
market risk measurement by derivatives dealers and other financial institutions. In addition, it is
increasingly used by non-financial corporations, and has recently attracted the interest of
regulators. For example, its useis strongly encouraged by banking regulators, and it is one of the
three permitted disclosure alternatives in the SEC’ s recent rule requiring that corporations prepare
and disclose quantitative measures of the market risks of their financial instruments. Linsmeier and
Pearson (1997b) describe the SEC’s new rule requiring disclosure of quantitative measures of
market risk.

The three basic approaches for measuring value-at-risk are termed historical simulation,
the delta-normal (or analytic or variance-covariance) method, and Monte Carlo simulation. These
basic methods are described in Linsmeier and Pearson (1996, 1997a). Zangari (1996) describes
the delta-gamma approach, which extends the delta-normal method to instruments with non-linear
value functions. Pritzker (1996) and Robinson (1996) describe a number of variants of the basic
methods, focusing on the tradeoff between speed and accuracy. Butler and Schachter (1997) and
Danidson and de Vries (1997) suggest using kernd estimators in conjunction with the historical



simulation method. In addition, Butler and Schachter (1997) and Jorion (1997) provide measures
of the precision of the value-at-risk estimate.

All of the methods for computing value-at-risk involve various approximations and
estimates, and a number of limitations of both value-at-risk and the methodologies for computing
value-at-risk estimates are well understood. All methods assume that the portfolio is fixed over the
time horizon used in the value-at-risk calculation, which is usually not the case. The ddta-normal
method is based on a linearization of the portfolio, and thus can perform poorly with portfolios
that include large positions in options or instruments with option-like payoffs (Guldimann (1994)).
This is documented by Beder (1995), Jordan and McKay (1995), and Pritzker (1996). In addition,
Marshall and Siegel (1997) document the existence of “implementation risk,” in that different
value-at-risk software will yield different results even while using the same methodology (J.P.
Morgan's RiskMetricsO ) and data (the standard RiskMetricsO dataset).

At least equally importantly, value-at-risk estimates are estimates of market risk, based on
past data. Mahoney (1995) and Hendricks (1996) provide evidence on the performance of different
methods for computing value-at-risk. Alexander (1996), Alexander and Leigh (1997), and
Boudoukh, Richardson, and Smith (1997) study the methods used to estimate the variances and
covariances used in value-at-risk calculations. Longerstaey (1996) and Duffie and Pan (1997)
discuss arange of statistical issues that arise in the estimation of value-at-risk. 1n addition, Kupiec
(1995), Lopez (1997) and Crnkovic and Drachman (1996) discuss statistical methods for
evaluating value-at-risk models.

In this paper we focus on the delta-normal method, and study a source of bias in value-at-
risk estimates that has not previously been recognized. Specifically, because value-at-risk
estimates are based on past data, on any day the trader or trading desk (or other persons who
decide which instruments to buy or sdl) is likely to have a good understanding of the errorsin the
value-at-risk estimate. For example, sheis likely to know for which markets and instruments
historical estimates of market volatility underestimate current market volatility, and for which
markets and instruments historical estimates overestimate current market volatility. Sheis also
likely to have information about the relation between current market correlations and historical
estimates of them. Asaresult, it will be possible for her to choose portfolios for which she knows
that the value-at-risk estimateis less than the “true’ value at risk, and thereby take on more risk
than risk limits and/or her supervisor permit. To the extent that she does this, the estimated value-

at-risk will be downward biased, i.e the “true’ value-at-risk will exceed the estimated value at risk.



Furthermore, the value-at-risk estimate can be biased even if the trader relies on the
estimated market variances and covariances and does not have knowledge of the “true’ covariance
matrix. If she uses the estimated covariance matrix to achieve certain trading or hedging
objectives, and also computes the value-at-risk using the same estimated covariance matrix, on
average she underestimates the risk, possibly to alarge extent. For example, suppose she
determines a hedge based on the estimated covariance matrix of two assets, and then, after
establishing the hedge, she estimates the risk of her hedged portfolio using the same estimated
covariance matrix. Inthis case sheis underestimating therisk. Objectives that can lead to biases
include maximizing expected return subject to a constraint on the estimated value-at-risk,
minimizing portfolio standard deviation subject to a constraint on expected return, and certain
other objectives involving the estimated variance-covariance matrix. These biases are caused by
the sampling error in the estimated variance covariance matrix, which follows a Wishart
distribution. If thetrader sdects uses the sampling error to sdect a portfolio to achieve a small
estimated portfolio standard deviation, then the risk will be underestimated. In the cases we
discuss in this paper, the trader is likdy to choose such portfolio weights.

Specifically, we assess the magnitude of these biases in value-at-risk estimates for three
different assumptions about the motivations and behavior of thetrader. Wefirst consider a trader
who seeks to maximize “true’ value-at-risk subject to a constraint on estimated value-at-risk. This
corresponds to a situation in which the trader is seeking to evade risk limits, and addresses the
question “how wrong can you be?” Whilethis may seem like an extreme casg, it is rdevant
because value-at-risk has been suggested for use in the “ control” function. In this context, it is
reasonable to consider a trader who istrying to evade risk limits - preventing this is one of the main
objects of the“control” function. Second, we consider a more typical case of a trader who seeks to
maximize expected return subject to a constraint on estimated value-at-risk. Finally, we assume
that atrader has identified a preferred portfolio, but is unable to hold it because the estimated
value-at-risk of the portfolio exceeds some specified limit. In this case we assume that the trader
seeks to hold a portfolio as close as possible to the preferred portfolio, subject to the constraint on
estimated value-at-risk. For each of these assumptions, we determine the bias for different
assumptions about the number of different instruments to which she has access' and the number of

observations used in estimating the covariance matrix. In all cases, we are able to show that the

! For example, whether she has access to U.S. dollar denominated fixed income instruments, U.S. dollar
and U.K. pound denominated fixed income instruments, fixed income instruments in all of the actively
traded currencies, etc.



distribution of the bias does not depend on the “true’ covariance matrix generating the data. In
addition to simplifying the presentation of the results, this allows determination of the distribution
of the bias without knowledge of the true covariance matrix, making feasible adjustment of the
estimates to “correct” the bias.

In the case of a trader who seeks to evade risk limits and take on as much risk as possible,
the bias is large except when the number of available assetsis small (i.e,, less than or equal to 20)
and the number of observations used in estimating the covariance matrix is large (greater than or
equal to 500). In the other two cases, the bias in estimated value-at-risk is smaller, but still large
for some reasonable combinations of parameters. In particular, the bias is very large when we
estimate the covariance matrices by weighting the data using exponentially declining weights. This
raises concerns about the use of this approach.

Our results apply to the use of value-at-risk in the control and performance evaluation of
an individual decision making unit such as atrader or trading desk. They also apply to companies
(e.g., some corporate end-users of derivatives) in which the entire portfolio of debt, derivatives, and
other financial instrumentsis centrally controlled by a single decision making unit. For firms or
companies with multiple trading desks, whether and how the biases at the levd of the individual
decision making unit aggregate to biases at the firm level will depend upon the correations among
the portfolios chosen by theindividual units.

In the next section we briefly describe the set-up, and distinguish between estimated and
“true’ value-at-risk. Then in Section || we consider a trader who seeks to maximize “true’ value-
at-risk subject to a constraint on estimated value-at-risk. Thisis the case wherethe biasis
greatest. In Sections 111 and 1V we consider traders who either seek to maximize expected return
subject to a constraint on estimated value-at-risk, or seek to hold a portfolio as close as possible to
apreferred portfolio, subject to a constraint on estimated value-at-risk. Section V briefly

concludes. Proofs of our claims are in the appendix.

|. Estimated and “ True” Value-at-Risk

In order to focus on the potential biases, we consider the computation of delta-normal
value-at-risk in a very simple set-up. Specifically, there are K assets, with prices on the n-th date
denoted by the K~ 1vector p, . TheseK assets may beinterpreted as the “ standardized positions’
often used in value-at-risk systems (see, for example, Guldimann 1994). The (absolute) price

changes X, = p, - P,.,areassumed to be draws from a multivariate Normal distribution with a



mean vector I and a (non-singular) covariance matrix S. The portfolio held by the trader or
trading desk is represented by a K “ 1 vector w giving the units (e.g., number of Japanese yen,
not the fraction of wealth invested in Japanese yen) of each of the K assets held by thetrader. We
are interested in the risk of various portfolios w.

Therisk manager does not know S, but rather possesses only an estimate

N

é: é I n(Xn - m)(xn - rn)I (1)

n=1

N
constructed using N observations and a set of weights {1 ,,I ,,l 5,...,1 \}, where é [, =1
n=1

Equation (1) includes as special cases both the equally weighted covariance matrix estimator

N

S=1a (%,- m(x,- m’ %)

n=1

and the exponentially weighted estimator

S=(1- A1 ™ (x, - m)(x, - m) &
or
S=(1- A1 (x - m)(x, - M), @

n=1
wherein equations (3) and (4) | <1 and N ischosen to belarge enough so that the omitted terms
have a negligible impact on the sum. In practice, in estimating the covariance matrix it is

commonly assumed that ™ =0, because for the data commonly used in financial applications the

mean has only trivial impact on the estimate of the covariance matrix (see, e.g. Figlewski (1997)).
We make this assumption below in analyzing the estimated value-at-risk.

Using S , the estimate of the portfolio varianceis W éN W and the estimated value-at-risk

estimated value- at - risk = kv'WSw ,
where k is a constant, determined by the probability level of the value-at-risk estimate (often k =
1.645 or 2.326). In contrast, the “true’ value at risk is

"true' value-at-risk = kvw Sw,



where S isthe actual, in contrast to the estimated, covariance matrix of changes in the market
values of the positions. We focus on the extent to which the estimated value-at-risk K+ wSw

provides a biased estimate of the “true” value-at-risk k+/wW' Sw .
The potential bias originates in the fact that for many value-at-risk systems K > N, i.e.

the dimension of the covariance matrix exceeds the number of observations used to estimateit. In

many actual value-at-risk systems, K, thedimensionof S andé , exceeds 400. However, the

covariance matrix may be estimated with fewer than 400 observations, and as a result the

estimated covariance matrix Sis s ngular. Thisimpliesthat there are many risky portfolios for

which the estimated portfolio variance W' éw , and therefore the estimated value-at-risk k\/ﬁv ,
arezero. Were atrader permitted to execute trades in all markets, it would be possible for her to
enter into an arbitrarily risky position for which the estimated value-at-risk is zero.

Clearly it is unreasonable to think that a trader or trading desk might have access to all
markets, so the case of atrader who is able to enter into a risky position with an estimated value-
at-risk of zero because the estimated covariance matrix he faces is singular is not realistic.”
However, aU.S. dollar-based interest rate swaps trader will be able to execute transactionsin all
segments of the U.S. dallar yidd curve, and in many cases a corporate end-user’s risk management
staff will be able to execute transactions at essentially any maturity in several of the actively traded
currencies. In the context of risk management systems, these situations correspond to K equal to
approximately 20,% and K between 50 and 100, or even greater, respectivey. It turns out that even
in these realistic situations the estimated covariance matrix can sometimes be close to non-singular,
and the estimated value at risk can be a very badly biased estimate of the “true’ value at risk.
Specifically, in these situations the expected value of the ratio of the estimated to “true’ value-at-
risk, that is the expected value of theratio

estimated value- at - risk _ kyw S w
"trug' value-at- risk ~ kyw'Sw

can be much smaller than one.

2 However, one of the authors is aware of an international bank whose proprietary trading group is
permitted to trade in essentially all markets (subject to position limits).

3 In some value-at-risk systems, theyield curve for each currency is summarized in terms of

approximately 20 basic or “standardized” positions, and an actual instrument or portfolio (e.g., an interest
rate swap or atrading “book” of swaps) is interpreted as a portfolio of the 20 standardized positions.

From the perspective of the risk measurement system, a fixed income trader is just working with portfolios
of these 20 standardized positions.



II. Maximum Biasin Estimated Value-at-Risk

It is frequently suggested that value-at-risk can be used for monitoring and controlling
traders and trading desks. For example, risk or position limits might be expressed in terms of
value-at-risk, with the value-at-risk then monitored daily (or perhaps more frequently) for
violations of the limits. Inthis®control” context, it is interesting to see whether estimation errors
in value-at-risk due to sampling variation in the estimated covariance matrix allow the trader or
trading desk to exceed the risk limits.

To address this question, we consider a trader who seeks to evade risk limits and take on
as much risk as possible. This may be due to hubris, a desire to exploit convexitiesin the
compensation formula and take advantage of the “trader’ s option,” or smply because sheis

gambling desperately in an attempt to recover previous losses. We assume that the trader knows

the true covariance matrix S. It isreasonableto assumethat she has a better estimate than é ,
because sheislikely to know whether the period from which the N observations used to estimate
S weretakenistypical (i.e., she has prior beliefs and access to other information). Among other
information, sheis likely to have access to market implied volatilities, and perhaps some

information from which she can imply market estimates of certain correations. Assuming

knowledge of S is the extreme case of assuming that the trader knows more than S , and allows us
to determine the maximum bias in estimated value-at-risk.

Maximizing true value-at-risk subject to a constraint on estimated value-at-risk yields the
same portfolio as minimizing estimated value-at-risk subject to a constraint on true value-at-risk.

Using this fact, we consider the problem
mnVywSw  subjectto  JwSw=c.

Letting w* denote the solution, from the first order conditions it follows immediately that the

estimated value-at-risk is W' Sw , and theratio of estimated to “true’ value-at-risk is

R(§ = KWSW 1 e
KJw swr ¢ |

Without loss of generality, we let c=1, so this becomes:



R (S) =Vw'Sw* .

We seek the distribution of theratio R (S) .4
In the appendix we show that Rl(é) is the square root of the minimal eigenvalue of ¥

where [ is the estimated covariance matrix constructed us ng asampleof N vectors z, drawn
from a multivariate Normal distribution with a mean of zero and covariance matrix | . That is,
letting S bethe symmetric squareroot of S, thevector z, defined z,© S™¥?x, is distributed
~ N N
multivariate Normal with a covariancematrix | ,and | =q | ,z,z,". Theresult that R (S) is
n=1

the squareroot of the minimal eigenvalue of | means that the distribution of the ratio of the
estimated to “true’ value-at-risk doesn’'t dependon S, but only on K and N.  Animmediate
implication of thisis that the bias in the estimated value-at-risk does not depend on the covariance
matrix S.

Computation of eigenvaluesiis straightforward and relatively fast, so the characterization

of Rl(é) as the square root of the minimal egenvalue of | allows us to simulateits distribution

fairly easily. Wedraw a sample of N random vectors z,, construct the estimated covariance

A

~ N
matrix | :él z,z,', and compute the minimal eigenvalueof | and its squareroot. Repesating

n=1

n

this process allows us to simulate the distribution of Rl(é) :
Table 1 shows the mean and standard deviation of Rl(é) for K =10, 20, 50, and 100

when | is estimated usi ng the equally weighted covariance matrix estimator

N
)

a ZI’1ZI'1I

A

ZlH

>
Ly

and N = 50, 100, 200, 500, and 1000. Each caseis estimated using 1000 simulated realizations of

Rl(é) . In addition, thefirst two rows of the table show the mean and standard deviation of

* Bdow we report statistics of the distribution of theratio of estimated to true value-at-risk rather than the
ratio of true to estimated value-at-risk because the estimated value-at-risk is often close to zero, distorting
some of the statistics.



R, when the covariance matrix is estimated using the exponentially weighted covariance matrix

estimator

| =(1- | )§N1 1™z 7",

n=1

where the sum is truncated at N = 100. This exponential weighting scheme has the effect of giving
more weight to recent price changes, and is the approach used in J.P. Morgan's RiskMetricsO
methodology. Likethem, weset | =94 . Theresultsin thetable show that thebiasislarge
except when the number of available instruments is small and the number of observations used in
estimating the covariance matrix is large. For example, when K = 50 and N = 200, the average
ratio of estimated to true value at risk is 0.518. Even when N = 1000, which corresponds to using
about 4 years of daily data to estimate the covariance matrix, when K = 50 the average ratio of
estimated to true value at risk is0.786. Moreover, the biasis very large for the exponentially
weighted covariance matrix estimator. Even when K is only 10 the mean ratio of estimated to true
value at risk is 0.551, and when K = 100 it is only 0.029, that is estimated value-at-risk is typically
only 2.9 percent of true value-at-risk.

To interpret these values of K, note that in value-at-risk systems, it is common to
summarizethe yield curvein each currency in terms of approximately 20 basic or “ standardized”
positions, and an actual instrument (e.g., an interest rate swap) is interpreted as a portfolio of the
20 standardized positions (e.g., Guldimann 1994). From the perspective of the risk measurement
system, a fixed income trader is just working with portfolios of these 20 standardized positions.
Thus, K = 20 corresponds to a trader or trading desk which trades the entire yied curve in one
currency, e.qg. a swaps trading desk, while K = 50 and K = 100 correspond to trading the yield
curvesin 2to 3 and 5 to 6 currencies, respectively. These latter cases correspond to the treasury
of a corporate end-user of derivatives which actively manages positions in several currencies.

The standard deviations of R reported in Table 1 indicate that the ratios are relatively

tightly clustered about the mean values reported in the table. Thisis confirmed by Table 2, which

reports various percentiles of the distributions of R, , and also the maximums and minimums. The

medians in this table are close to the means in Table 1, indicating that the means provide a
reasonable measure of the center of the distributions of the ratios of estimated to true value-at-risk.
Strikingly, even many of the maximum values are relatively small. For example, when K = 50 and
N = 200, the maximum ratio (of 1000) of estimated to true value at risk is 0.569, only slightly
higher than the mean of 0.518. Even when N = 1000, when K = 50 the maximum ratio of



estimated to true value-at-risk is 0.812. Also, as one might expect after examining the means, the
maximums are strikingly small for the exponentially weighted covariance matrix estimator. Even
when K is only 10 the maximum ratio of estimated to truevalue at risk is 0.696, and when K = 100
itisonly 0.036.

These results raise concerns about the ability of risk limits based on value-at-risk to
control the risk-taking behavior of a trader who consciously seeks to evade them. If value-at-risk is
to be used for this purpose, theresultsin Tables 1 and 2 suggest that the covariance matrix should
be estimated using a large sample of past price changes. Alternatively, because the bias does not
depend on the covariance matrix S, theresultsin this table allow one to adjust conventional value-
at-risk estimates to compute estimates based on the assumption that the trader seeks to evade risk
limits and maximize the risk of the position.

We emphasize that these measures of bias represent (simulation estimates of) upper
bounds on the bias in estimated value-at-risk. In these calculations, we assume that the trader

seeks to evade risk limits and take on as much risk as possible, and assume that the trader knows

the true covariance matrix S . If the trader had a better estimatethan S , but did not know S,
these upper bounds would not be reached. Also, our analysis does not consider other mechanisms
to contral risk-taking such as position limits on individual instruments. Nonethdless, in considering
the use of value-at-risk in the “control” function, it is reasonable to consider the worst case. These
results call into question the use of value-at-risk for controlling the risk-taking behavior of
individual traders or trading desks.

II1. Trader maximizes expected return subject to a constraint on estimated value-at-
risk

A situation that arises naturally is that of a trader who maximizes expected return subject
to the constraint that estimated value-at-risk may not exceed some maximum limit. In this caseit
is likdy that the “true’ value-at-risk will exceed the limit, because the trader will tend to take risky
positions for which the estimated value-at-risk is underestimated. This can happen even if the
trader makes no effort to exceed the limit on value-at-risk, because the goal of maximizing
expected return rewards the trader for taking on risk, but the constraint penalizes her for taking on
estimated risk. Of course, in this case the bias will be less than the maximum bias above.

Letting m denotea K~ 1 vector of expected returns, the problem of maximizing expected

return subject to a constraint on estimated value-at-risk is

10



maxw'm subjectto VwWSwEc.

Thefirst order conditions are
m- 2l Sw=0,
wSw-c=0.
JcS'm

The portfolio the trader will chooseis W* = ——, and the estimated value-at-risk of her

JmS'm

portfoliois k\/E. However, the “true’ value-at-risk will be

-1

\/ms m

Theratio of estimated to “true’ value-at-risk is

mSm

RS = k\/—/k\/a/ms 15§ 1m
m

Sm

w/m‘S'lSS' m

In the appendix we show that the distribution of R, doesn’'t depend on S, but rather

depends only on K and N. Thus, we can simulate it using draws from a multivariate Normal

distribution with a covariance matrix of I.
Table 3 shows the mean and standard deviation of Rz(é) for the same choices of K and

N used in Tables 1 and 2, along with results when the covariance matrix is estimated using the

exponentially weighted estimator. Asin Tables 1 and 2, each case is estimated using 1000
simulated realizations of Rz(é) . The biases are considerably smaller thanin Table 1. For

example, when K = 50 and N = 200, the average ratio of estimated to truevalue at risk is 0.753, in
comparison to the averageratio of 0.518 in Table 1. When N = 1000 and K = 50 the average ratio
of estimated to true value at risk is 0.951 rather than the 0.786 in Table 1. However, thebiasis

11



still large for some combinations of K and N, and is very large for the exponentially weighted
covariance matrix estimator except when K = 10. With the exponentially weighted estimator the
mean ratio of estimated to true value at risk is 0.206 when K = 50, and 0.046 when K = 100.

Table 4 reports various percentiles of the distributions of R, (é) , and also the maximums

and minimums. As was the case with Tables 1 and 2, the medians in this table are close to the
means reported in Table 3. Again as one might expect after examining the means, even some of
the maximums are small for the exponentially weighted covariance matrix estimator. When K = 20
the maximum ratio of estimated to true value at risk is 0.793, and when K = 100 it is only 0.083.

The biases reported in Table 3 are considerably smaller than those reported in Table 1.
Thisis not surprising, given that Table 1 reports upper bounds on the biases, and assumes that the
trader maximizesrisk. In contrast, Table 3 reports biases that may well betypical. They stem
from maximizing expected return, subject to a constraint on estimated value-at-risk, and do not
assume that the trader has knowledge of the true covariance matrix. This may be a reasonable
approximation of the behavior of traders who face a constraint on estimated value-at-risk; finance
theory suggeststhat it is. Thus, the results reported in Tables 3 and 4 raise doubts about the use of
value-at-risk in monitoring and performance evaluation when K 3 50 and N is small or moderate
in size, or when the exponentially weighted covariance estimator is used, regardless of the value of
K.

V. Trader chooses a portfolio as close as possible to a desired portfolio subject toa
constraint on estimated value-at-risk

Traders may not always maximize expected return. Rather, there may be some
idiosyncratic trade that, for whatever reason, the trader or trading desk wantsto do. Thisisthe
case we consider in this section.

Specifically, we consider a portfolio W, which will be interpreted as a portfolio that the
trader would like to establish. We choose W so that the “true’ value-at-risk of W is greater than
the limit imposed by senior management. The portfolio that the trader entersinto is denoted w.
Senior management imposes the constraint W' éN W £ C (the constraint is in terms of the estimated

value-at-risk because that is al senior management can observe). Thetrader triesto get closeto

W without violating the constraint w' éNW £ c. Formally, she solves the problem

12



1 =
mmE(w- W) Q(w- W) subject to JW S w £ c,
where Q is amatrix that weights deviations between wand W .

A reasonable choiceof Qis Q = S, because this choice of Q corresponds to minimizing
the variance of the difference between the returns of the portfolios w and W . To seethis, note
that the trading desk wants to enter into the portfolio W , and thus desires the random variable
W' X (recall that x is the vector of price changes), but is forced to accept a random variable W' x .
Writing W' X intermsof W'X, wehavew X = W'X + (w- W)' X, where (W- W)' X isthe
difference between the returns of the two portfolios. Thevarianceof (W- W)'Xis
(w- W) S(w- W), sothechoiceof Q =S corresponds to minimizing this variance. Also, at
the optimal wwe have E(W x|W'Xx) = 0.

With this choice of Q, the problem becomes

min (w- W)'S(w- W)subject tov'w Sw £ c.

Letting w* denote the solution, once again we areinterested in the ratio of estimated to “true”’

value-at-risk,

VW Sw

S)="——.

R;(S) I
Since VwW*'Sw* =c, this becomes Rg(é):;.
Wr' Sw*

Theinterpretation of this caseis that the trading desk wants to enter into a portfolio W,

which is too risky in the sense that W'SW>c. So, the trading desk instead enters into the

portfolio w* , which is as close as possibleto W without violating the constraint. Then,
R, (S) indicates the relation between the estimated value-at-risk kv w*'Sw* and the “true’ value-
at-risk kv/wt" Sw* and.

We show in the appendix that the distribution of R, (é) depends only on the true value-at-
risk /W' SW of the desired portfolio W. Thisallows useto carry out simulations by letting

S = 1. Table5 shows the mean and standard deviation of Rs(é) when c=vwSw =1 and

13



VW Sw = /2, i.e. the variance of the desired portfolio is twice the permitted variance. Thetable
reports results for the equally weighted covariance matrix estimator for the same choices of K and
N used in Tables 1-4, along with results when the covariance matrix is estimated using the

exponentially weighted estimator. As in the other tables, each caseis estimated using 1000
simulated reslizations of R,(S) .

Thebiasesin Table 5 are considerably smaller than those reported in Tables 1 and 3,
though till significant for many of the combinations of K and N. For example, when K =50 and N
= 200, the average ratio of estimated to true value at risk is 0.889, in comparison to the average
ratio of 0.518 in Table 1 and averageratio of 0.753 in Table 3. However, the biases are large only
for the exponentially weighted covariance matrix estimator. For example, for the exponentially
weighted estimator with K = 50, the averageratio is 0.655. This raises concerns about the use of
this estimator.

V. Conclusion

We have shown that there can be significant biases in value-at-risk estimates. How should
oneinterpret these results?

First, our results have no implications for many uses of value-at-risk. We study situations
inwhich an individual trader or decision making unit (e.g., a trading desk) ether intentionally or
unintentionally systematically exploits the estimation errorsin value-at-risk in order to enter into
positions for which the “true’ value-at-risk exceeds the estimated value-at-risk. The systematic
exploitation of the estimation errorsis crucial; without it, and setting aside other estimation issues
not addressed in this paper, the estimated value-at-risk would be an unbiased estimate of “true”’
value-at-risk. For thisreason, our results have implications only for the use of value-at-risk to
monitor or control individual traders or trading desks. For firms or companies with multiple
trading desks, whether and how the biases at the level of the individual decision making unit
aggregate to biases at the firm level will depend upon the corrdations among the portfolios chosen
by theindividual units. Thus, our results do not apply to the use of value-at-risk in reporting a
summary measure of aggregate market risk to senior management or the board of directors,
investors, or regulators.

However, our results have strong implications for the use of value-at-risk in controlling

individual traders or trading desks. We find that the bias in estimated value-at-risk can be large

14



when atrader or trading desk ddiberately seeks to evade risk limits and take on as much risk as
possible. This raises questions about the efficacy of value-at-risk in controlling the behavior of
individual risk-taking units.

In our analysis and simulations, we assume that the covariance matrix is the same every
period. Under this assumption, the biases can be mitigated by the use of large samples to estimate
value-at-risk. However, in actuality the covariance matrices of price changes are not constant (see
Figlewski (1997) and section 12.2 of Cambell, Lo, and MacKinlay (1997), and the references cited
therein), and value-at-risk measures that assume that they are can lead to large errors. 1n addition,
work by Kupiec (1995), Lopez (1997), and Crnkovic and Drachman (1996) suggests that some
tests for identifying errors in value-at-risk modds have rdativey little power against reasonable
alternatives. Thus, one cannot be confident that systematic biases in value-at-risk estimates will be
readily detected.

Our results aso have implications for the use of value-at-risk in performance evaluation
and compensation. Recently, it has been suggested that compensation should be based on risk-
adjusted performance (e.g., Davies (1997)). If therisk adjustment is done using value-at-risk, then

traders will have clear incentives to enter into portfolios in which the estimated value-at-risk is low.
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Appendix

Proof that Rl(é) isthe square root of the minimal eigenvalue of I

Consider the prablem

mnwSw subjectto WSw=1.

Letting w* denote the solution of this problem, theratio of estimated to “true’ value-at-risk is

RE) :%“’"“g"’lv: = JwSwr,

K/ w*'
Forming the Lagrangian and computing thefirst order conditions, the solution w* must satisfy:

Sy - Sw =0, (5)
WE'Sw* - 1=0, (6)

where | isthe Lagrange multiplier. Pre-multiplying (5) by w*' and using (6), we obtain
WX 'éNW" =j , or
R(Sy) = w'Syw* = .

This shows that the ratio of the estimated to true value-at-risk is the square root of the Lagrange
multiplier. In general, there may be multiple solutions of the first order conditions (5) and (6), so
we want the solution with the smallest | .

Eachj that solves (5) and (6) is an eigenvalue of | . To seethis, pre-multiply (5) by

S, yidding

(S1S-j )wr =0. ©)

~ ~ N
Thematrix Sisestimatedby S=g | ,x,X,", where X, =S¥?z

n“*n“*n 1
n=1

z,~N(O,1,),and |  isthe

n?

~ N
K-dimensional identity matrix. Noticing that | = é I
n=1

z,z,', we have

S=s'? g2, )
Substituting (8) into (7) yields (S 21 S¥2-j )w* =0. Thisisthe standard eigenvalue

equation, soeach |  that solves this equation is an eigenvalue of S*IS™! | and w* isthe
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1/2|AS-1/2

associated eigenvector. Now we need only show that the two matrices S° and | share

the same eigenval ues.

Suppose | isan eigenvalueof STY2[ Y2

and w isthe associated eigenvector, i.e.
S'ller'lIZW:j W

Pre-multiplying this equation by SY2yields | S *?w=j S"2w. Then defining v=S"?w, we

have fvzj V. Thus|] isalsoan eigenvalue of . This argument can be reversed to show that

if j isaneigenvalueof |, thenitisalso an eigenvalueof SV2[ SV2.

Proof that the distribution of Rz(é) depends only on K and N.

The problem of maximizing expected return subject to a constraint on the estimated value-at-risk is

maxwm  subjectto WS wEc.

The optimal portfolio w* satisfies thefirst order conditions

m- 2| Sw* =0,
w*'Sw* - c=0.
Rearranging the first equation, we have
&-1
WE = S™m ©)
2

Substituting this into the second of the first order conditions and rearranging, we obtain
2 [m&'s5m JmS, m

The estimated value-at-risk of this portfolio is kv W' Sw* = k\/E , and the “tru€’ value-at-risk is

&-lee-1
szk@j‘”? SS"m
mS™m

. Then using thefact that S = S¥2ISY?, wehave W =

. Thus theratio of estimated to true value-at-risk is

JmSm
Jm&1ssm

R,(S) =
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The distribution of this ratio depends only on K and N. To seethis, from equation (8) and
N

|=a1,zz', wehave St =S Y215 Y2 g theratio of the estimated to true value-at-risk
n=1

becomes

. mS—l/ZIA—lS—lIZm mS—llzlA—lS—lIZm
R,(S) = \/A = = U201 -1a-1/2
\/ms—llzl 1g-l2gg V2| -1g- Y2, msS Y21 1sY?m
Let T be the orthogonal matrix such that S ’m=aTv, where v = (1,0,...,0)¢and
a’=mMS*'m. Then
mS Y2115 Y2m v g Ty
MS VTS P v € Ty
vty
var ¢ TT¢ Ty
VET'IT) v
VET'IT) Y(T'IT) v

V@A 12,2,

— n=1

V& 12,2, ) T A 2,2,

n=1 n=1

Since the distribution of Tz, isidentical to the distribution of z,, the distribution of

V& 1,2,2,)T)

n=1

S S isidentical to the distribution of
VET'(@ 1,2,z M ™T@ ! ,2,2,)T)

n=1 n=1
) 1
anl nznznl) v VA_lV
S n=l S , or more simply, —=—=——, which only varies with the choice
o] n-1,2 n-1 V¢ | \
véal,.z,z,) (@l ,.zz) v
n=1 n=1

of Nand K. Thus we conclude that the distribution of the ratio Rz(é) depends only on K and N.

20



Proof that the distribution of Rs(é) depends only on the “ trug”’ value-at-risk +/W'Sw .

Theproblemis:

min%(w- W)'S(W- W)  subjectto  WSwEc. (10)

w

Letting w* denote the solution of (5) and Rs(é) denote theratio of estimated to true value-at-

risk, we have

RS(S)_—“V\FSW* /,/

Equation (8) abovetdls us that S isafunctionof S and the z,, o w* and Rs(é) are

functionsof S, W, and the z,. Weuse W (S,W,z,...,Z,) ad R,(SW,z,...,z,) to

denote them.

Suppose that there are two portfolios W, and W, with the same true value-at-risk; i.e.,

W,'SW, = W,' SW, or ||S”2\Tvl||2 = ||S”2\Tv2||2. Thisimplies that there exists an orthogonal matrix
T such that
S]JZ— S]JZ— (11)

For W,, using equation (8) , the problem (12) can be written
. J— 2 . N
mvlvnHS” ‘w- SY Zwlu subjectto WSY3(Q 1,2,2,)S"?w=c. (12
n=1

If W (S,W,,Z2,...,Z,) isthesolution of this problem, then by equation (11) it is also the solution
of
- J— 2 . D
mvlvnus”zw- TS”ZWZH subjectto WSY3(g 1,2,2,)SYw=c.
n=1
Since T is orthogonal, ||S"2w - TS”Z\TVZH2 = [T ¢s2w- TS”Z\TVZ)”Z. Then the problem
becomes

N
mi n“TS” w- SY 2\TVZ“2 subjectto WSY2(Q 1,2,2,)S"2w=c.
W n=1

Letting v bethevector v = S™Y*T S"?w , we have T S"?w = S¥?v, and this can be

rewritten as
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N
llel/2 12 ||? - 12111 8 nNTal/2y, _
mvlnS v- S WZH subjectto  v& T(allnznzn)TS V=cC.
n=

Letting V' denote the solution of this problem, by comparing this problem with (12), we know
V- =w (S,W,,T¢,...,T¢,) . Therefore,
w (S, w,,Z) =SV’ TS"' =S V*TS"*w' (S,W,,T¢,,....T'z,),
wherethefirst equality follows from the definition of v. Using this equation, we have
R,(S\W,,Z,...,Z) :]/\/W*(S,\Tvl,21,...,zN)'SW*(S,\Tv,21,...,zN)
=1/ W (S W,,T¢,,....T'z,) S > T& V?SS°TS"?W (S, W,,T¢,,..., T'z,)
=1/ W (S, W,,Te,....T'z,)SW (SW,,T¢,,...,T'z,)
=R,(SW,,T¢,...,.T'z,).

Since z, and T'z, aretwo equally likely realizations of N(O, 1, ), thedistribution of Rs(é) for

W, isidentical to that for W,. Then, since W, and W, are arbitrarily selected with the only
requirement being that they have the same true value-at-risk, the distribution of Rs(é) depends

on W only through ~/W' SW . Next, we will show that it depends on S only through W' Sw .

Suppose W (S,W, Z,,...,Z,) solvesthe problem
N
min“S”zw- Sl’zv_vH2 subjectto WSY3(g 1,2,2,)SY?w=c.
W n=1

Letting v = S”?w, the problem can be rewritten as

- J— 2 . N )
min|v - SlIZWH subjectto V& | ,z,z,)v=c.
v n=1

If v' solves this problem then, by comparing the problem with (7), we have

v =w(l,,S"*W,z,...,2,). Thus,
w (SW,z,...,2,) =S Vv =5"W (I,,S"W,z,...,7,),

where | isthe K-dimensional identity matrix. Using this equation, we have
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R,(S\W,z,...,Z,) :]/\/W*(S,\Tv,zl,...,zN)GSW*(S,\Tv,zl,...,zN)

:]/\/W*(IK,Sllz\l_\l,Zl,...,ZN)qS'lIZSS'lIZW*(IK,SllZ\TV,Zl,...,ZN)

=1/ W (1,,8"°W, 7,...,2 )8 W (I,,S"°W, 7,,...,2,)
=R,(1,,S"*W,z,...,2,).

From the previous argument we know that the distribution of R,(1,,S"*W, z,...,2) s
afunction of only |, and thetrue value-at-risk of the objective portfolio, W(S W. Thus, the
distribution of R,(S,W, z,,...,2,) isasoafunctionof only |, and W(S W . Put another way,

the distribution of R,(S,W,Z) dependson S only through W(S W .
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Table 1: Means and standard deviations of Rl(é) , theratio of estimated to true value-at-risk
assuming that the trader maximizes the bias in the estimated value-at-risk. The standard deviations
arein parentheses. The distributions were estimated using 1000 simulated realizations of Rl(é) .

Dimension of Covariance Matrix (K)

Number of
observations used to
estimate covariance 10 20 50 100
matrix (N)
exponential weighting  0.551  0.372 0.131 0.029
withl =.94 and (0.047) (0.031) (0.011) (0.002)
N = 100°
50 0.606 0.405
(0.053) (0.042)
100 0.725 0.586 0.312
(0.039) (0.032) (0.023)
200 0.809 0.710 0.518 0.306
(0.029) (0.025) (0.019) (0.014)
500 0.879 0.817 0.697 0.563
(0.019) (0.016) (0.013) (0.011)
1000 0.915 0.871 0.786 0.692
(0.013) (0.012) (0.009) (0.008)

5 When K = 100, N = 200 observations were used.
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Table 2: Percentiles of the distributions of Rl(é) , theratio of estimated to true value-at-risk
assuming that the trader maximizes the bias in the estimated value-at-risk. The distributions were
estimated using 1000 simulated realizations of R,(S) .

Dimension of Covariance Matrix (K)

Number of observations

used to estimate Percentile 10 20 50 100
covariance matrix (N)
exponential weighting min. 0.406 0.277 0.092 0.022
with| = .94 and 10" 0490 0.333 0117 0.026
N = 100° 25" 0520 0351 0.124 0.027
50 0554 0374 0.132 0.029
750 0581 0.394 0.139 0.030
go™ 0612 0409 0.145 0.032
max. 0696 0481 0.164 0.036
50 min. 0.424 0.220
10" 0539 0.352
251 0571 0.378
50" 0.607  0.405
750 0.643 0.433
go™ 0.674 0.456
max. 0.760 0.536
100 min. 0592 0485 0.221
10" 0675 0543 0.282
251 0.700 0563  0.298
50 0.728 0588 0.312
750 0.754 0.609 0.328
go™ 0.774 0.627 0.342
max. 0.864 0.676  0.377
200 min. 0695 0.611 0464 0.255
10" 0772 0.680 0.494 0.288
251 0791 0.693 0506  0.297
50 0.810 0.712 0519 0.306
750 0829 0.727 0531 0.315
go™ 0.846 0.740 0543 0.323
max. 0.884 0781 0569 0.351
500 min. 0783 0.767 0.643 0527
10" 0.855 0.795 0.68L 0.548
251 0.866 0.805 0.688 0.556
50 0.880 0.818 0.697 0.563
750 0.892 0.828 0.706 0571
go™ 0903 0.836 0713 0577
max. 0931 0.861 0.74 0.594
1000 min. 0869 0.829 0.751 0.666
10" 0.899 0.856 0.774 0.682
251 0907 0.863 0781 0.687
50 0915 0.871 0787 0.693
750 0924 0.879 0793 0.698
go™ 0932 0.88 0798 0.702
max. 0966 0.908 0812 0.714

6 When K = 100, N = 200 observations were used.
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Table3: Mean and standard deviation of the distributions of R, (é) , theratio of estimated to

“true’ value-at-risk assuming that the trader maximizes expected return subject to a constraint on
the estimated value-at-risk. The distributions were estimated using 1000 simulated reglizations of

R, (é) . The standard deviations are in parentheses.

Dimension of Covariance Matrix (K)

Number of
observations used to
estimate covariance 10 20 50 100
matrix (N)
exponential weighting  0.742 0.541 0.206 0.046
withl =.94 and (0.102) (0.075) (0.032) (0.007)
N = 100’
50 0.814 0.609
(0.095) (0.092)
100 0.905 0.805 0.497
(0.070) (0.071) (0.061)
200 0.954 0.901 0.753 0.503
(0.050) (0.051) (0.048) (0.045)
500 0.981 0.959 0.902 0.804
(0.032) (0.031) (0.033) (0.031)
1000 0.991 0.981 0.951 0.901
(0.022) (0.022) (0.023) (0.023)

"When K = 100, N = 200 observations were used.
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Table4: Percentiles of the distributions of R, (é) , theratio of estimated to “true’ value-at-risk
assuming that the trader maximizes expected return subject to a constraint on the estimated value-

at-risk. The distributions were estimated using 1000 simulated realizations of R, (é)

Dimension of Covariance Matrix (K)

Number of observations

used to estimate Percentile 10 20 50 100
covariance matrix (N)
exponential weighting min. 0466 0.348 0.117 0.029
with| = .94 and 10" 0614 0446 0.166 0.038
N = 100° 25" 0671 0488 0.184 0.041
50 0736 0534 0204 0.045
750 0.8100 0589 0227 0.050
go™ 876 0641 0.248 0.054
max. 1103 0793 0.316 0.083
50 min. 0545 0.376
10" 0.698  0.489
251 0.747 0547
50 0.809  0.608
750 0.877  0.666
go™ 0939 0.731
max. 1188 0.911
100 min. 0669 0601 0.339
10" 0.819 0716 0.423
251 0.858 0.756  0.457
50 0.906 0.800 0.494
750 0951 0.850 0.540
go™ 0995 0.899 0.580
max. 1144 1.050 0.702
200 min. 0.800 0754 0597 0375
10" 0.891 0834 0.693 0.445
251 0918 0869 0.720 0.471
50 0954 0899 0.753 0502
750 0986 0935 0.786 0535
go™ 1.014 094 0813 0.560
max. 1152 1.075 0939 0.670
500 min. 0879 0869 0.789 0.707
10" 0938 0920 0.859 0.764
251 0959 0937 0.880 0.782
50 0982 0959 0.902 0.804
750 1.001 0980 0926 0.825
go™ 1.021 1.000 0945 0.843
max. 1101 1.064 1007 0918
1000 min. 0925 0914 0.862 0.797
10" 0963 0953 0.922 0873
251 0976 0966 0.935 0.886
50 0991 0982 0950 0.902
750 1.006 0997 0965 00917
go™ 1021 1.011 0981 0.929
max. 1.068 1.054 1018 0973

8 When K = 100, N = 200 observations were used.
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Table5: Mean and standard deviation of the distributions of R, (é) , theratio of estimated to

“true’ value-at-risk assuming that the trader sdects a preferred portfolio subject to a constraint on
the estimated value-at-risk. The standard deviations are in parentheses. The distributions were

estimated using 1000 simulated realizations of R,(S).

Dimension of Covariance Matrix (K)

Number of
observations used to
estimate covariance 10 20 50 100
matrix (N)
exponential weighting  0.868  0.779 0.655 0.583
withl =.94 and (0.101) (0.085) (0.050) (0.026)
N = 100°
50 0912 0.831
(0.093) (0.084)
100 0.953 0.908 0.799
(0.070) (0.067) (0.055)
200 0.978 0.955 0.889 0.800
(0.047) (0.048) (0.046) (0.039)
500 0.992 0.982 0.953 0.907
(0.032) (0.031) (0.030) (0.030)
1000 0.997 0.991 0.976 0.952
(0.022) (0.023) (0.022) (0.022)

9 When K = 100, N = 200 observations were used.
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Table6: Percentiles of the distributions of R, (é) , theratio of estimated to “trug’ value-at-risk
assuming that the trader selects a preferred portfolio subject to a constraint on the estimated value-
at-risk. The distributions were estimated using 1000 simulated realizations of R, (é) :

Dimension of Covariance Matrix (K)

Number of observations

used to estimate Percentile 10 20 50 100
covariance matrix (N)
exponential weighting min. 0599 0.348 0.524 0.512
with| = .94 and 10" 0751 0446 0.596 0.552
N =100 25" 0791 0488 0.618 0.564
50 0.823 0534 0.649 0.581
750 09301 0589 0.686 0.598
go™ 001 0641 0721 0.616
max. 1267 0793 0.830 0.681
50 min. 0619 0593
10" 0792 0725
25 0.848 0.771
50 0910 0.826
750 0.974 0.887
go™ 1.035 0.942
max. 1.284  1.100
100 min. 0.766 0.693  0.657
10" 0.860 0.822 0.730
25 0.908 0.863 0.769
50 0952 0906 0.795
750 1.002 0953 0.836
go™ 1041 099  0.870
max. 1210 1149  1.009
200 min. 0.815 0778 0.749 0.681
10" 0919 0891 0.831 0.750
25 0.946 0923 0.857 0.776
50 0977 0955 0.888 0.800
750 1.007 0989 0.920 0.824
go™ 1.039 1.016 0.948 0.849
max. 1138 1100 1.028 0.930
500 min. 0.889 0.866 0.865 0.814
10" 0952 0941 0.914 0.869
251 0971 0961 0.931 0.885
50 0992 0982 0.952 0.907
750 1013 1.002 0.973 0.927
go™ 1.033 1.023 0.992 0.946
max. 1.089 1.075 1.048 1.003
1000 min. 0914 0924 0.880 0.878
10" 0.967 0962 0.949 0.924
251 0982 0976 0.961 0.938
50 0996 0989 0.976 0.952
750 1.009 1.005 0.991 0.966
go™ 1.025 1.022 1.005 0.980
max. 1062 1.055 1.037 1.018

29



30



