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Using Value-at-Risk to Control Risk Taking:  How Wrong Can You Be?

Abstract

We study a source of bias in value-at-risk estimates that has not previously been recognized.
Because value-at-risk estimates are based on past data, a trader will often have a good
understanding of the errors in the value-at-risk estimate, and it will be possible for her to choose
portfolios for which she knows that the value-at-risk estimate is less than the “true” value at risk.
Thus, the trader will be able to take on more market risk than risk limits based on value-at-risk
permit.  Biases can also arise if she does not have a good understanding of the errors, but uses the
estimated covariance matrix  to achieve certain portfolio objectives. We assess the magnitude of
these biases for three different assumptions about the motivations and behavior of the trader and
find that in all cases, value-at-risk  estimates are systematically downward biased.   In some
circumstances the biases can be very large.  Our study of the distributions of the biases also
suggests a way to adjust the estimates to “correct” the biases.



1

Using Value-at-Risk to Control Risk Taking:  How Wrong Can You Be?

The risk measurement technique known as value-at-risk has recently become a standard

approach for measuring the market risk of financial and commodity derivative instruments, and

other financial instruments.  Value-at-risk models provide a probabilistic measure of the “market

risk” of a portfolio of financial instruments, i.e. the risk that the market value of a portfolio of

financial instruments will change as a result of changes in interest rates, foreign currency exchange

rates, commodity prices, or equity prices.  Specifically, value-at-risk models measure the loss that

will be exceeded with a specified probability over a specified time horizon.  For example, if the

specified probability is 5 percent and the time horizon is one day, then a value-at-risk of $1 million

means that the daily mark-to-market loss will exceed $1 million with a probability of only 5

percent.  These models have recently become popular because market risk is a key concern of

companies’ senior managers, investors, and regulators, and the models aggregate the several

components of market risk into a single summary measure.

Value-at-risk is used for controlling traders and risk management staff (e.g., setting

position and trading limits), determination of capital requirements, performance evaluation, and

disclosure to both internal (senior management and/or the board of directors) and external

constituencies (regulators and investors).  Currently, value-at-risk is regarded as “best practice” for

market risk measurement by derivatives dealers and other financial institutions.  In addition, it is

increasingly used by non-financial corporations, and has recently attracted the interest of

regulators.  For example, its use is strongly encouraged by banking regulators, and it is one of the

three permitted disclosure alternatives in the SEC’s recent rule requiring that corporations prepare

and disclose quantitative measures of the market risks of their financial instruments. Linsmeier and

Pearson (1997b) describe the SEC’s new rule requiring disclosure of quantitative measures of

market risk.

The three basic approaches for measuring value-at-risk are termed historical simulation,

the delta-normal (or analytic or variance-covariance) method, and Monte Carlo simulation. These

basic methods are described in Linsmeier and Pearson (1996, 1997a).  Zangari (1996) describes

the delta-gamma approach, which extends the delta-normal method to instruments with non-linear

value functions.  Pritzker (1996) and Robinson (1996) describe a number of variants of the basic

methods, focusing on the tradeoff between speed and accuracy.  Butler and Schachter (1997) and

Danielson and de Vries (1997) suggest using kernel estimators in conjunction with the historical
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simulation method.  In addition, Butler and Schachter (1997) and Jorion (1997) provide measures

of the precision of the value-at-risk estimate.

All of the methods for computing value-at-risk involve various approximations and

estimates, and a number of limitations of both value-at-risk and the methodologies for computing

value-at-risk estimates are well understood. All methods assume that the portfolio is fixed over the

time horizon used in the value-at-risk calculation, which is usually not the case.  The delta-normal

method is based on a linearization of the portfolio,  and thus can perform poorly with portfolios

that include large positions in options or instruments with option-like payoffs (Guldimann (1994)).

This is documented by Beder (1995), Jordan and McKay (1995), and Pritzker (1996).  In addition,

Marshall and Siegel (1997) document the existence of “implementation risk,” in that different

value-at-risk software will yield different results even while using the same methodology (J.P.

Morgan’s RiskMetrics ) and data (the standard RiskMetrics  dataset).

At least equally importantly, value-at-risk estimates are estimates of market risk, based on

past data.  Mahoney (1995) and Hendricks (1996) provide evidence on the performance of different

methods for computing value-at-risk. Alexander (1996), Alexander and Leigh (1997), and

Boudoukh, Richardson, and Smith (1997) study the methods used to estimate the variances and

covariances used in value-at-risk calculations. Longerstaey (1996) and Duffie and Pan (1997)

discuss a range of statistical issues that arise in the estimation of value-at-risk.  In addition, Kupiec

(1995), Lopez (1997) and Crnkovic and Drachman (1996) discuss statistical methods for

evaluating value-at-risk models.

In this paper we focus on the delta-normal method, and study a source of bias in value-at-

risk estimates that has not previously been recognized.  Specifically,  because value-at-risk

estimates are based on past data, on any day the trader or  trading desk (or other persons who

decide which instruments to buy or sell) is likely to have a good understanding of the errors in the

value-at-risk estimate.  For example, she is likely to know for which markets and instruments

historical estimates of market volatility underestimate current market volatility, and for which

markets and instruments historical estimates overestimate current market volatility.  She is also

likely to have information about the relation between current market correlations and historical

estimates of them.  As a result, it will be possible for her to choose portfolios for which she knows

that the value-at-risk estimate is less than the “true” value at risk, and thereby take on more risk

than risk limits and/or her supervisor permit. To the extent that she does this, the estimated value-

at-risk will be downward biased, i.e. the “true” value-at-risk will exceed the estimated value at risk.
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Furthermore, the value-at-risk estimate can be biased even if the trader relies on the

estimated market variances and covariances and does not have knowledge of the “true” covariance

matrix.  If  she uses the estimated covariance matrix to achieve certain trading or hedging

objectives, and also computes the value-at-risk using the same estimated covariance matrix, on

average she  underestimates the risk, possibly to a large extent.  For example, suppose she

determines a hedge based on the estimated covariance matrix of two assets, and then, after

establishing the hedge, she estimates the risk of her hedged portfolio using the same estimated

covariance matrix.  In this case she is underestimating the risk.  Objectives that can lead to biases

include maximizing expected return subject to a constraint on the estimated value-at-risk,

minimizing portfolio standard deviation subject to a constraint on expected return, and certain

other objectives involving the estimated variance-covariance matrix.  These biases are caused by

the sampling error in the estimated variance covariance matrix, which follows a Wishart

distribution.   If  the trader selects uses the sampling error to select a portfolio to achieve a small

estimated portfolio standard deviation, then the  risk will be underestimated.  In the cases we

discuss in this paper, the trader is likely to choose such portfolio weights.

Specifically, we assess the magnitude of these biases in value-at-risk estimates for three

different assumptions about the motivations and behavior of the trader.  We first consider a trader

who seeks to maximize “true” value-at-risk subject to a constraint on estimated value-at-risk.  This

corresponds to a situation in which the trader is seeking to evade risk limits, and addresses the

question “how wrong can you be?”  While this may seem like an extreme case, it is relevant

because value-at-risk has been suggested for use in the “control” function.  In this context, it is

reasonable to consider a trader who is trying to evade risk limits - preventing this is one of the main

objects of the “control” function.  Second, we consider a more typical case of a trader who seeks to

maximize expected return subject to a constraint on estimated value-at-risk.  Finally, we assume

that a trader has identified a preferred portfolio, but is unable to hold it because the estimated

value-at-risk of the portfolio exceeds some specified limit.  In this case we assume that the trader

seeks to hold a portfolio as close as possible to the preferred portfolio, subject to the constraint on

estimated value-at-risk.  For each of these assumptions, we determine the bias for different

assumptions about  the number of different instruments to which she has access1 and the number of

observations used in estimating the covariance matrix.  In all cases, we are able to show that the

                                                  
1 For example, whether she has access to U.S. dollar denominated fixed income instruments, U.S. dollar
and U.K. pound denominated fixed income instruments, fixed income instruments in all of the actively
traded currencies, etc.
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distribution of the bias does not depend on the “true” covariance matrix generating the data.  In

addition to simplifying the presentation of the results, this allows determination of the distribution

of the bias without knowledge of the true covariance matrix, making feasible adjustment of the

estimates to “correct” the bias.

In the case of a trader who seeks to evade risk limits and take on as much risk as possible,

the bias is large except when the number of available assets is small (i.e., less than or equal to 20)

and the number of observations used in estimating the covariance matrix is large (greater than or

equal to 500).  In the other two cases, the bias in estimated value-at-risk is smaller, but still large

for some reasonable combinations of parameters.  In particular, the bias is very large when we

estimate the covariance matrices by weighting the data using exponentially declining weights.  This

raises concerns about the use of this approach.

Our results apply to the use of value-at-risk in the control and performance evaluation of

an individual decision making unit such as a trader or trading desk.  They also apply to companies

(e.g., some corporate end-users of derivatives) in which the entire portfolio of debt, derivatives, and

other financial instruments is centrally controlled by a single decision making unit.   For firms or

companies with multiple trading desks, whether and how the biases at the level of the individual

decision making unit aggregate to biases at the firm level will depend upon the correlations among

the portfolios chosen by the individual units.

In the next section we briefly describe the set-up, and distinguish between estimated and

“true” value-at-risk.  Then in Section II we consider a trader who seeks to maximize “true” value-

at-risk subject to a constraint on estimated value-at-risk.  This is the case where the bias is

greatest. In Sections III and IV we consider traders who either seek to maximize expected return

subject to a constraint on estimated value-at-risk, or seek to hold a portfolio as close as possible to

a preferred portfolio, subject to a constraint on estimated value-at-risk.  Section V briefly

concludes.   Proofs of our claims are in the appendix.

I.  Estimated and “True” Value-at-Risk

In order to focus on the potential biases, we consider the computation of delta-normal

value-at-risk in a very simple set-up.  Specifically, there are K assets, with prices on the n-th date

denoted by the K ×1vector pn . These K assets may be interpreted as the “standardized positions”

often used in value-at-risk systems (see, for example, Guldimann 1994).  The (absolute) price

changes x p pn n n= − − 1 are assumed to be draws from a multivariate Normal distribution with a
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mean vector  µ  and a (non-singular) covariance matrix Σ .  The portfolio held by the trader or

trading desk is represented by a K ×1  vector w  giving the units (e.g., number of Japanese yen,

not the fraction of wealth invested in Japanese yen) of each of the K assets held by the trader.   We

are interested in the risk of various portfolios w.

The risk manager does not know Σ , but rather possesses only an estimate

∑
=

−−=Σ
N

n
nnn xx

1

)')((ˆ µµλ                                                 (1)

constructed using N observations and a set of weights },,,,{ 321 Nλλλλ K ,  where λn
n

N

=
∑ =

1
1.

Equation (1) includes as special cases both the equally weighted covariance matrix estimator

  ∑
=

−−=Σ
N

n
nnN xx

1

1 )')((ˆ µµ                                                  (2)

and the exponentially weighted estimator

∑
∞

=

− −−−=Σ
1

1 )')(()1(ˆ
n

nn
n xx µµλλ                                           (3)

or

∑
=

− −−−=Σ
N

n
nn

n xx
1

1 )')(()1(ˆ µµλλ ,                                         (4)

where in equations (3) and  (4) 1<λ  and  N is chosen to be large enough so that the omitted terms

have a negligible impact on the sum.  In practice, in estimating the covariance matrix it is

commonly assumed that 0=µ , because for the data commonly used in financial applications the

mean has only trivial impact on the estimate of the covariance matrix (see, e.g. Figlewski (1997)).

We make this assumption below in analyzing the estimated value-at-risk.

Using Σ̂ , the estimate of the portfolio variance is w wN' $Σ  and the estimated value-at-risk

is

wwk Σ= ˆ'risk -at- valueestimated ,

where k is a constant, determined by the probability level of the value-at-risk estimate (often k =

1.645 or 2.326).  In contrast, the “true” value at risk is

" true"  value - at - risk = k w w' Σ ,
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where Σ is the actual, in contrast to the estimated, covariance matrix of changes in the market

values of the positions.   We focus on the extent to which the estimated value-at-risk wwk Σ̂'

provides a biased estimate of the “true” value-at-risk k w w' Σ .

The potential bias originates in the fact that for many value-at-risk systems K N> , i.e.

the dimension of the covariance matrix exceeds the number of observations used to estimate it.   In

many actual value-at-risk systems, K, the dimension of  Σ  and $Σ , exceeds 400.  However, the

covariance matrix may be estimated with fewer than 400 observations, and as a result the

estimated covariance matrix Σ̂ is singular.   This implies that there are many risky portfolios for

which the estimated portfolio variance ww Σ̂' , and therefore the estimated value-at-risk wwk Σ̂' ,

are zero.   Were a trader permitted to execute trades in all markets, it would be possible for her to

enter into an arbitrarily risky position for which the estimated value-at-risk is zero.

Clearly it is unreasonable to think that a trader or trading desk might have access to all

markets, so the case of a trader who is able to enter into a risky position with an estimated value-

at-risk of zero because the estimated covariance matrix he faces is singular is not realistic.2

However, a U.S. dollar-based interest rate swaps trader will be able to execute transactions in all

segments of the U.S. dollar yield curve, and in many cases a corporate end-user’s risk management

staff will be able to execute transactions at essentially any maturity in several of the actively traded

currencies.  In the context of risk management systems, these situations correspond to K equal to

approximately 20,3 and K between 50 and 100, or even greater, respectively.  It turns out that even

in these realistic situations the estimated covariance matrix can sometimes be close to non-singular,

and the estimated value at risk can be a very badly biased estimate of the “true” value at risk.

Specifically, in these situations the expected value of the ratio of the estimated to “true” value-at-

risk, that is the expected value of the ratio

estimated value - at - risk
" true"  value - at - risk

=
k w w
k w w

N' $

'
Σ
Σ

,

can be much smaller than one.

                                                  
2 However, one of the authors is aware of an international bank whose proprietary trading group is
permitted to trade in essentially all markets (subject to position limits).
3 In some value-at-risk systems, the yield curve for each currency is summarized in terms of
approximately 20 basic or “standardized” positions, and an actual instrument or portfolio (e.g., an interest
rate swap or a trading “book” of swaps) is interpreted as a portfolio of the 20 standardized positions.
From the perspective of the risk measurement system, a fixed income trader is just working with portfolios
of these 20 standardized positions.
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II. Maximum Bias in Estimated Value-at-Risk

It is frequently suggested that value-at-risk can be used for monitoring and controlling

traders and trading desks. For example, risk or position limits might be expressed in terms of

value-at-risk, with the value-at-risk then monitored daily (or perhaps more frequently) for

violations of the limits.  In this “control” context, it is interesting to see whether estimation errors

in value-at-risk due to sampling variation in the estimated covariance matrix allow the trader or

trading desk to exceed the risk limits.

To address this question, we consider a trader who seeks to evade risk limits and take on

as much risk as possible.  This may be due to hubris, a desire to exploit convexities in the

compensation formula and take advantage of the “trader’s option,” or simply because she is

gambling desperately in an attempt to recover previous losses.   We assume that the trader knows

the true covariance matrix Σ .  It is reasonable to assume that she has a better estimate than Σ̂ ,

because she is likely to know whether the period from which the N observations used to estimate

Σ were taken is typical (i.e., she has prior beliefs and access to other information).  Among other

information, she is likely to have access to market implied volatilities, and perhaps some

information from which she can imply market estimates of certain correlations. Assuming

knowledge of Σ is the extreme case of assuming that the trader knows more than Σ̂ , and allows us

to determine the maximum bias in estimated value-at-risk.

Maximizing true value-at-risk subject to a constraint on estimated value-at-risk yields the

same portfolio as minimizing estimated value-at-risk subject to a constraint on true value-at-risk.

Using this fact, we consider the problem

cwwww
w

=ΣΣ '            ˆ'min subject to .

Letting w *  denote the solution, from the first order conditions it follows immediately that the

estimated value-at-risk is *ˆ*' ww Σ , and the ratio of estimated to “true” value-at-risk is

*ˆ*'
1

**'
*ˆ*'

)(1 ww
cwwk

wwk
R Σ=

Σ
Σ=Σ

)
.

Without loss of generality, we let c=1, so this becomes:
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 *ˆ*')̂(1 wwR Σ=Σ .

We seek the distribution of the ratio )̂(1 ΣR .4

In the appendix we show that  )̂(1 ΣR is the square root of the minimal eigenvalue of Î ,

where Î is the estimated covariance matrix constructed using a sample of N  vectors zn  drawn

from a multivariate Normal distribution with a mean of zero and covariance matrix I .  That is,

letting Σ1 2/ be the symmetric square root of Σ ,  the vector zn defined z xn n≡ −Σ 1 2/  is distributed

multivariate Normal with a covariance matrix I , and ∑
=

=
N

n
nnn zzI

1

'ˆ λ .   The result that  )̂(1 ΣR is

the square root of the minimal eigenvalue of Î means that the distribution of the ratio of the

estimated to “true” value-at-risk doesn’t depend on Σ , but only on K and N.    An immediate

implication of this is that the bias in the estimated value-at-risk does not depend on the covariance

matrix Σ .

Computation of eigenvalues is straightforward and relatively fast, so the characterization

of  )̂(1 ΣR as the square root of the minimal eigenvalue of Î allows us to simulate its distribution

fairly easily.  We draw a sample of N random vectors zn , construct the estimated covariance

matrix ∑
=

=
N

n
nnn zzI

1

'ˆ λ ,  and compute the minimal eigenvalue of  Î  and its square root.  Repeating

this process allows us to simulate the distribution of   )̂(1 ΣR .

Table 1 shows the mean and standard deviation of   )̂(1 ΣR for K = 10, 20, 50, and 100

when Î  is estimated using the equally weighted covariance matrix estimator

∑
=

=
N

n
nnN zzI

1

1 'ˆ

and N = 50, 100, 200, 500, and 1000.  Each case is estimated using 1000 simulated realizations of

 )̂(1 ΣR .  In addition, the first two rows of the table show the mean and standard deviation of

                                                  
4 Below we report statistics of the distribution of the ratio of estimated to true value-at-risk rather than the
ratio of true to estimated value-at-risk because the estimated value-at-risk is often close to zero, distorting
some of the statistics.
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R1 when the covariance matrix is estimated using the exponentially weighted covariance matrix

estimator

∑
=

−−=
N

n
nn

n zzI
1

1 ')1(ˆ λλ ,

where the sum is truncated at N = 100.  This exponential weighting scheme has the effect of giving

more weight to recent price changes, and is the approach used in J.P. Morgan’s  RiskMetrics

methodology.  Like them, we set λ=.94 .   The results in the table show that the bias is large

except when the number of available instruments is small and the number of observations used in

estimating the covariance matrix is large.  For example, when K = 50 and N = 200, the average

ratio of estimated to true value at risk is 0.518.  Even when N = 1000, which corresponds to using

about 4 years of daily data to estimate the covariance matrix, when K = 50 the average ratio of

estimated to true value at risk is 0.786.  Moreover, the bias is very large for the exponentially

weighted covariance matrix estimator.  Even when K is only 10 the mean ratio of estimated to true

value at risk is 0.551, and when K = 100 it is only 0.029, that is estimated value-at-risk is typically

only 2.9 percent of true value-at-risk.

To interpret these values of K, note that in value-at-risk systems, it is common to

summarize the  yield curve in each currency in terms of approximately 20 basic or “standardized”

positions, and an actual instrument (e.g., an interest rate swap) is interpreted as a portfolio of the

20 standardized positions (e.g., Guldimann 1994).  From the perspective of the risk measurement

system, a fixed income trader is just working with portfolios of these 20 standardized positions.

Thus, K = 20 corresponds to a trader or trading desk which trades the entire yield curve in one

currency, e.g. a swaps trading desk, while K = 50 and K = 100 correspond to trading the yield

curves in 2 to 3 and 5 to 6 currencies, respectively.  These latter cases correspond to the treasury

of a corporate end-user of derivatives which actively manages positions in several currencies.

The standard deviations of R1 reported in Table 1 indicate that the ratios are relatively

tightly clustered about the mean values reported in the table.  This is confirmed by Table 2, which

reports various percentiles of the distributions of  R1 , and also the maximums and minimums.  The

medians in this table are close to the means in Table 1, indicating that the means provide a

reasonable measure of the center of the distributions of the ratios of estimated to true value-at-risk.

Strikingly, even many of the maximum values are relatively small. For example, when K = 50 and

N = 200, the maximum ratio (of 1000) of estimated to true value at risk is 0.569, only slightly

higher than the mean of 0.518.  Even when N = 1000, when K = 50 the maximum ratio of
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estimated to true value-at-risk is 0.812. Also, as one might expect after examining the means, the

maximums are strikingly small for the exponentially weighted covariance matrix estimator.  Even

when K is only 10 the maximum ratio of estimated to true value at risk is 0.696, and when K = 100

it is only 0.036.

These results raise concerns about the ability of risk limits based on value-at-risk to

control the risk-taking behavior of a trader who consciously seeks to evade them.  If value-at-risk is

to be used for this purpose, the results in Tables 1 and 2 suggest that the covariance matrix should

be estimated using a large sample of past price changes.  Alternatively, because the bias does not

depend on the covariance matrix Σ , the results in this table allow one to adjust conventional value-

at-risk estimates to compute estimates based on the assumption that the trader seeks to evade risk

limits and maximize the risk of the position.

We emphasize that these measures of bias represent (simulation estimates of) upper

bounds on the bias in estimated value-at-risk.   In these calculations, we assume that the trader

seeks to evade risk limits and take on as much risk as possible, and assume that the trader knows

the true covariance matrix Σ . If the trader had a better estimate than Σ̂ , but did not know Σ ,

these upper bounds would not be reached. Also, our analysis does not consider other mechanisms

to control risk-taking such as position limits on individual instruments.  Nonetheless, in considering

the use of value-at-risk in the “control” function, it is reasonable to consider the worst case.  These

results call into question the use of value-at-risk for controlling the risk-taking behavior of

individual traders or trading desks.

III. Trader maximizes expected return subject to a constraint on estimated value-at-

risk

A situation that arises naturally is that of a trader who maximizes expected return subject

to the constraint that estimated value-at-risk may not exceed some maximum limit.  In this case it

is likely that the “true” value-at-risk will exceed the limit, because the trader will tend to take risky

positions for which the estimated value-at-risk is underestimated.  This can happen even if the

trader makes no effort to exceed the limit on value-at-risk, because the goal of maximizing

expected return rewards the trader for taking on risk, but the constraint penalizes her for taking on

estimated risk.  Of course, in this case the bias will be less than the maximum bias above.

Letting µ denote a K ×1  vector of expected returns,  the problem of maximizing expected

return subject to a constraint on estimated value-at-risk is
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max ' ' $
w

w w w cµ subject to Σ ≤ .

The first order conditions are

µ λ− =
− =

2 0
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' .

Σ
Σ
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The portfolio the trader will choose is  
µµ
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1

1
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−

Σ
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portfolio is k c .   However, the “true” value-at-risk will be
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In the appendix we show that the distribution of R2 doesn’t depend on Σ,  but rather

depends only on K and N.  Thus, we can simulate it using draws from a multivariate Normal

distribution with a covariance matrix of I.

Table 3 shows the mean and standard deviation of  )̂(2 ΣR  for the same choices of K and

N used in Tables 1 and 2, along with results when the covariance matrix is estimated using the

exponentially weighted estimator.  As in Tables 1 and 2, each case is estimated using 1000

simulated realizations of )̂(2 ΣR .  The biases are considerably smaller than in Table 1.  For

example, when K = 50 and N = 200, the average ratio of estimated to true value at risk is 0.753, in

comparison to the average ratio of 0.518 in Table 1.  When N = 1000 and K = 50 the average ratio

of estimated to true value at risk is 0.951 rather than the 0.786 in Table 1.  However, the bias is
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still large for some combinations of K and N, and is very large for the exponentially weighted

covariance matrix estimator except when K = 10.  With the exponentially weighted estimator the

mean ratio of estimated to true value at risk is 0.206 when K = 50, and 0.046 when K = 100.

Table 4 reports various percentiles of the distributions of )̂(2 ΣR , and also the maximums

and minimums.  As was the case with Tables 1 and 2, the medians in this table are close to the

means reported in Table 3.  Again as one might expect after examining the means, even some of

the maximums are small for the exponentially weighted covariance matrix estimator.  When K = 20

the maximum ratio of estimated to true value at risk is 0.793, and when K = 100 it is only 0.083.

The biases reported in Table 3 are considerably smaller than those reported in Table 1.

This is not surprising, given that Table 1 reports upper bounds on the biases, and assumes that the

trader maximizes risk.  In contrast, Table 3 reports biases that may well be typical.  They stem

from maximizing expected return, subject to a constraint on estimated value-at-risk, and do not

assume that the trader has knowledge of the true covariance matrix.  This may be a reasonable

approximation of the behavior of traders who face a constraint on estimated value-at-risk; finance

theory suggests that it is.  Thus, the results reported in Tables 3 and 4 raise doubts about the use of

value-at-risk in monitoring and performance evaluation when K ≥ 50 and N is small or moderate

in size, or when the exponentially weighted covariance estimator is used, regardless of the value of

K.

IV.  Trader chooses a portfolio as close as possible to a desired portfolio subject to a

constraint on estimated value-at-risk

Traders may not always maximize expected return.  Rather, there may be some

idiosyncratic trade that, for whatever reason, the trader or trading desk wants to do.   This is the

case we consider in this section.

Specifically, we consider a portfolio w , which will be interpreted as a portfolio  that the

trader would like to establish.  We choose w so that the “true” value-at-risk of w  is greater than

the limit imposed by senior management.  The portfolio that the trader enters into is denoted w.

Senior management imposes the constraint w w cN' $Σ ≤  (the constraint is in terms of the estimated

value-at-risk because that is all senior management can observe).  The trader tries to get close to

w  without violating the constraint w w cN' $Σ ≤ .  Formally, she solves the problem



13

min ( )' ( ) ' $ ,
w Nw w Q w w w w c

1
2

− − ≤subject to Σ

where Q is a matrix that weights deviations between w and w .

A reasonable choice of  Q is Q = Σ , because this choice of Q corresponds to minimizing

the variance of the difference between the returns of the portfolios w  and w .  To see this, note

that the trading desk wants to enter into the portfolio w , and thus desires the random variable

w x' (recall that x is the vector of price changes), but is forced to accept a random variable w x' .

Writing w x' in terms of w x' , we have w x w x w w x' ' ( )'= + − , where ( )'w w x− is the

difference between the returns of the two portfolios.   The variance of ( )'w w x− is

( )' ( )w w w w− −Σ , so the choice of  Q = Σ  corresponds to minimizing this variance.  Also, at

the optimal w we have E w x w x( ' | ' ) .= 0

With this choice of Q, the problem becomes

.ˆ')()'(min subject to2
1 cwwwwww

w
≤Σ−Σ−

Letting w *  denote the solution, once again we are interested in the ratio of estimated to “true”

value-at-risk,

.
**'
*ˆ*'

)̂(3
ww
ww

R
Σ
Σ=Σ

Since cww =Σ *ˆ*' ,  this becomes .
**'

)̂(3 ww
cR
Σ

=Σ

The interpretation of this case is that the trading desk wants to enter into a portfolio w ,

which is too risky in the sense that cww >Σ̂' .  So, the trading desk instead enters into the

portfolio w * , which is as close as possible to w  without violating the constraint.  Then,

)̂(3 ΣR indicates the relation between the estimated value-at-risk *ˆ*' wwk Σ  and the “true” value-

at-risk k w w*' *Σ and.

We show in the appendix that the distribution of )̂(3 ΣR  depends only on the true value-at-

risk ww Σ'  of the desired portfolio w .  This allows use to carry out simulations by letting

Σ = I . Table 5 shows the mean and standard deviation of  )̂(3 ΣR  when 1ˆ' =Σ= wwc  and
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w w' Σ = 2 , i.e. the variance of the desired portfolio is twice the permitted variance.  The table

reports results for the equally weighted covariance matrix estimator for the same choices of K and

N used in Tables 1-4, along with results when the covariance matrix is estimated using the

exponentially weighted estimator.  As in the other tables, each case is estimated using 1000

simulated realizations of )̂(3 ΣR .

The biases in Table 5 are considerably smaller than those reported in Tables 1 and 3,

though still significant for many of the combinations of K and N. For example, when K = 50 and N

= 200, the average ratio of estimated to true value at risk is 0.889, in comparison to the average

ratio of 0.518 in Table 1 and average ratio of 0.753 in Table 3. However, the biases are large only

for the exponentially weighted covariance matrix estimator. For example, for the exponentially

weighted estimator with K = 50, the average ratio is 0.655.   This raises concerns about the use of

this estimator.

V. Conclusion

We have shown that there can be significant biases in value-at-risk estimates.  How should

one interpret these results?

First,  our results have no implications for many uses of value-at-risk.  We study situations

in which an individual trader or decision making unit (e.g., a trading desk) either intentionally or

unintentionally systematically exploits the estimation errors in value-at-risk in order to enter into

positions for which the “true” value-at-risk exceeds the estimated value-at-risk.  The systematic

exploitation of the estimation errors is crucial; without it, and setting aside other estimation issues

not addressed in this paper, the estimated value-at-risk would be an unbiased estimate of “true”

value-at-risk.  For this reason, our results have implications only for the use of value-at-risk to

monitor or control individual traders or trading desks.  For firms or companies with multiple

trading desks, whether and how the biases at the level of the individual decision making unit

aggregate to biases at the firm level will depend upon the correlations among the portfolios chosen

by the individual units.    Thus, our results do not apply to the use of value-at-risk in reporting a

summary measure of aggregate market risk to senior management or the board of directors,

investors, or regulators.

However, our results have strong implications for the use of value-at-risk in controlling

individual traders or trading desks.  We find that the bias in estimated value-at-risk can be large
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when a trader or trading desk deliberately seeks to evade risk limits and take on as much risk as

possible.  This raises questions about the efficacy of value-at-risk in controlling the behavior of

individual risk-taking units.

In our analysis and simulations, we assume that the covariance matrix is the same every

period.  Under this assumption, the biases can be mitigated by the use of large samples to estimate

value-at-risk.   However, in actuality the covariance matrices of price changes are not constant (see

Figlewski (1997) and section 12.2 of Cambell, Lo, and MacKinlay (1997), and the references cited

therein), and value-at-risk measures that assume that they are can lead to large errors.  In addition,

work by Kupiec  (1995), Lopez (1997), and Crnkovic and Drachman (1996) suggests that some

tests for identifying errors in value-at-risk models have relatively little power against reasonable

alternatives.  Thus, one cannot be confident that systematic biases in value-at-risk estimates will be

readily detected.

Our results also have implications for the use of value-at-risk in performance evaluation

and compensation.  Recently, it has been suggested that compensation should be based on risk-

adjusted performance (e.g., Davies (1997)).  If the risk adjustment is done using value-at-risk, then

traders will have clear incentives to enter into portfolios in which the estimated value-at-risk is low.
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Appendix

Proof that  )̂(1 ΣR is the square root of the minimal eigenvalue of Î .   

Consider the problem

ww
w

Σ̂'min    subject to   1' =Σww .

Letting w *  denote the solution of this problem, the ratio of estimated to “true” value-at-risk is

.*ˆ*'
**'
*ˆ*')̂(1 ww

wwk
wwkR Σ=

Σ
Σ=Σ

Forming the Lagrangian and computing the first order conditions, the solution w *  must satisfy:

(6)                                                  ,01**'
(5)                                              ,0*)ˆ(

=−Σ
=Σ−Σ

ww
wN ϕ

where ϕ  is the Lagrange multiplier.  Pre-multiplying (5) by w*'  and using (6), we obtain

ϕ=Σ *ˆ*' ww N ,  or

ϕ=Σ=Σ *ˆ*')ˆ(1 wwR NN .

 This shows that the ratio of the estimated to true value-at-risk is the square root of the Lagrange

multiplier.  In general, there may be multiple solutions of the first order conditions (5) and (6), so

we want the solution with the smallest ϕ .

Eachϕ  that solves (5) and (6) is an eigenvalue of Î .  To see this, pre-multiply (5) by

1−Σ ,  yielding

.0*)ˆ( 1 =−ΣΣ − wϕ                                                   (7)

The matrix Σ̂ is estimated by ∑
=

=Σ
N

n
nnn xx

1

'ˆ λ , where nn zx 2/1Σ= ,  ),0(~ Kn INz , and KI is the

K-dimensional identity matrix.  Noticing that ∑
=

=
N

n
nnn zzI

1

'ˆ λ  ,  we  have

 2/12/1 ˆˆ ΣΣ=Σ I .                                      (8)

Substituting (8) into (7) yields 0*)ˆ( 2/12/1 =−ΣΣ −− wI ϕ .  This is the standard eigenvalue

equation, so each ϕ  that solves this equation is an eigenvalue of 11 ˆ −− ΣΣ I  , and w *  is the
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associated eigenvector.  Now we need only show that the two matrices 2/12/1 ˆ −− ΣΣ I  and Î  share

the same eigenvalues.

Suppose ϕ  is an eigenvalue of 2/12/1 ˆ −− ΣΣ I  and w is the associated eigenvector, i.e.

wwI ϕ=ΣΣ −− 2/12/1 ˆ .

Pre-multiplying this equation by 2/1Σ yields wwI 2/12/1ˆ Σ=Σ − ϕ .  Then defining wv 2/1Σ= , we

have vvI ϕ=ˆ .  Thus ϕ  is also an eigenvalue of Î .  This argument can  be reversed to show that

if ϕ  is an eigenvalue of Î , then it is also an eigenvalue of 2/12/1 ˆ −− ΣΣ I .

Proof that the distribution of  )̂(2 ΣR depends only on K and N.

The problem of maximizing expected return subject to a constraint on the estimated value-at-risk is

cwww
w

≤Σ̂'      subject to      'max µ .

The optimal portfolio w *  satisfies the first order conditions

.0**'
,0*ˆ2

=−Σ
=Σ−

cww
wλµ

Rearranging the first equation, we have

λ
µ

2

ˆ
*

1−Σ=w .                                                          (9)

Substituting this into the second of the first order conditions and rearranging, we obtain

µµλ 11 ˆˆ'2
1

−− ΣΣΣ
= c

. Then  using the fact that 2/12/1 ˆˆ ΣΣ=Σ I , we have   
µµ

µ
1

1

ˆ'

ˆ
*

−

−

Σ
Σ=

N

cw .

The estimated value-at-risk of this portfolio is ckwwk =Σ *ˆ*' , and the “true” value-at-risk is

µµ
µµ

1

11

ˆ'

ˆˆ'
**'

−

−−

Σ
ΣΣΣ=Σ ck

wwk . Thus the ratio of estimated to true value-at-risk is

  .
ˆˆ'

ˆ'
)̂(

11

1

2
µµ

µµ
−−

−

ΣΣΣ
Σ=ΣR
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The distribution of this ratio depends only on K and N.  To see this, from equation (8) and

∑
=

=
N

n
nnn zzI

1

'ˆ λ ,  we have 2/112/11 ˆˆ −−−− ΣΣ=Σ I , so the ratio of the estimated to true value-at-risk

becomes

µµ
µµ

µµ
µµ

2/1112/1

2/112/1

2/112/12/112/1

2/112/1

2 ˆˆ'

ˆ'
ˆˆ'

ˆ'
)̂( −−−−

−−−

−−−−−−

−−−

ΣΣ
ΣΣ=

ΣΣΣΣΣ
ΣΣ=Σ

II
I

II

I
R

Let T be the orthogonal matrix such that Σ − =1 2/ ,µ aTv  where v = ′( , ,..., )1 0 0 and

a 2 1= −µ µ' Σ .  Then

.
))'('())'('(

))'('(

)ˆ'()ˆ'(
)ˆ'(

ˆˆ
ˆ

ˆˆ
ˆ

ˆˆ'

ˆ'

1

1

1

1

1

1

11

1

11

1

11

1

2/1112/1

2/112/1

vTzzTTzzTv

vTzzTv

vTITTITv
vTITv

TvITTITv
TvITv

TvIITv
TvITv

II
I

N

n
nnn

N

n
nnn

N

n
nnn

−

=

−

=

−

=

−−

−

−−

−

−−

−

−−−−

−−−

∑∑

∑
′

′
=

′
′=

′′′
′′=

′′
′′=

ΣΣ
ΣΣ

λλ

λ

µµ
µµ

Since the distribution of nzT ' is identical to the distribution of nz ,  the distribution of

vTzzTTzzTv

vTzzTv

N

n
nnn

N

n
nnn

N

n
nnn

1

1

1

1

1

1

))'('())'('(

))'('(

−

=

−

=

−

=

∑∑
∑

′

′

λλ

λ
    is identical to the distribution of

vzzzzv

vzzv

N

n
nnn

N

n
nnn

N

n
nnn

1

1

1

1

1

1

)'()'(

)'(

−

=

−

=

−

=

∑∑
∑

′

′

λλ

λ
, or more simply, 

′
′

−

− −
v I v

v I I v

$
$ $

1

1 1 , which only varies with the choice

of N and K.  Thus we conclude that the distribution of the ratio )̂(2 ΣR  depends only on K and N.
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Proof that the distribution of  )̂(3 ΣR depends only on the “true” value-at-risk w w' Σ .

The problem is:

cwwwwww
w

≤Σ−Σ− ˆ'            )()'(
2
1min subject to .                    (10)

Letting w *  denote the solution of (5) and  )̂(3 ΣR denote the ratio of  estimated to true value-at-

risk, we have

.**'
**'
*ˆ*'

)̂(3 wwc
ww
ww

R Σ=
Σ
Σ=Σ

Equation (8) above tells us that Σ̂  is a function of  Σ  and the nz ,  so w *  and  )̂(3 ΣR are

functions of Σ , w ,  and  the nz .  We use  ),,,,( 1
*

Nzzww KΣ  and ),,,,( 13 NzzwR KΣ  to

denote them.

Suppose that there are two portfolios w1  and  w2  with the same true value-at-risk, i.e.,

w w w w1 1 2 2' 'Σ Σ=  or Σ Σ1 2
1

2 1 2
2

2/ /w w= . This implies that there exists an orthogonal matrix

T such that

T w wΣ Σ1 2
2

1 2
1

/ / .= (11)

For w1 , using equation (8) , the  problem (12) can be written

cwzzwww
N

n
nnnw

=ΣΣΣ−Σ ∑
=

2/1

1

2/12

1
2/12/1 )'('            min subject to λ .        (12)

If ),,,,( 11
*

Nzzww KΣ   is the solution of this problem, then by equation (11) it is also the solution

of

.)'('      min 2/1

1

2/12

2
2/12/1       subject to cwzzwwTw

N

n
nnnw

=ΣΣΣ−Σ ∑
=

λ

Since ′T  is orthogonal, Σ Σ Σ Σ1 2 1 2
2

2 1 2 1 2
2

2/ / / /( )w T w T w T w− = ′ − .  Then the problem

becomes

       
2

2
2/12/1min wwT

w
Σ−Σ′      subject to    cwzzw

N

n
nnn =ΣΣ ∑

=

2/1

1

2/1 )'(' λ .

Letting v be the vector v T w= ′−Σ Σ1 2 1 2/ /  , we have ′ =T w vΣ Σ1 2 1 2/ / , and this can be

rewritten as
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2

2
2/12/1min wv

v
Σ−Σ   subject to    cvTzzTv

N

n
nnn =ΣΣ′ ∑

=

2/1

1

2/1 )'(' λ .

Letting v *  denote the solution of this problem, by comparing this problem with (12), we know

),,,,(* 12
*

NzTzTwwv ′′Σ= K . Therefore,

)',,,,(),,( 12
*2/12/1*2/12/1

1
*

NzTzTwwTvTZww K′ΣΣΣ=ΣΣ=Σ −− ,

where the first equality follows from the definition of v.  Using this equation, we have

).',,,,(

)',,,,()'',,,,(1

)',,,,()'',,,,(1

),,,,()',,,,(1),,,,(

123

12
*

12
*

12
*2/12/12/12/1

12
*

11
*

11
*

113

N

NN

NN

NNN

zTzTwR

zTzTwwzTzTww

zTzTwwTTzTzTww

zzwwzzwwzzwR

K

KK

KK

KKK

′Σ=
′ΣΣ′Σ=

′ΣΣΣΣΣ′Σ′Σ=

ΣΣΣ=Σ
−−

Since nz  and  nzT '  are two equally likely realizations of ),0( KIN , the distribution of  )̂(3 ΣR for

w1  is identical to that for w2 .  Then, since w1 and w2 are arbitrarily selected with the only

requirement being that they have the same true value-at-risk, the distribution of   )̂(3 ΣR  depends

on w only through w w' Σ . Next, we will show that it depends on Σ only through w w' Σ .

Suppose ),,,,( 1
*

Nzzww KΣ  solves the problem

cwzzwww
N

n
nznw

=ΣΣΣ−Σ ∑
=

2/1

1

2/122/12/1 )'('      min       subject to λ .

Letting v w= Σ1 2/ , the problem can be rewritten as

cvzzvwv
N

n
nnnv

=′Σ− ∑
=

)'(     min
1

22/1       subject to λ .

If v *  solves this problem then, by comparing the problem with (7),  we have

),,,,( 1
2/1**

NK zzwIwv KΣ= .  Thus,

),,,,(*),,,,( 1
2/1*2/12/1

1
*

NKN zzwIwvzzww KK ΣΣ=Σ=Σ −− ,

where KI  is the K-dimensional identity matrix.  Using this equation, we have
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).,,,,(

),,,,(),,,,(1

),,,,(),,,,(1

),,,,(),,,,(1),,,,(

1
2/1

3

1
2/1*

1
2/1*

1
2/1*2/12/1

1
2/1*

1
*

1
*

13

NK

NKKNK

NKNK

NNN

zzwIR

zzwIwIzzwIw

zzwIwzzwIw

zzwwzzwwzzwR

K

KK

KK

KKK

Σ=
Σ′Σ=

ΣΣΣΣ′Σ=

ΣΣ′Σ=Σ
−−

From the previous argument we know that the distribution of ),,,,( 1
2/1

3 NK zzwIR KΣ is

a function of only IK  and the true value-at-risk of the objective portfolio,  ′w wΣ .  Thus, the

distribution of ),,,,( 13 NzzwR KΣ  is also a function of only IK  and ′w wΣ . Put another way,

the distribution of ),,(3 ZwR Σ  depends on Σ only through ′w wΣ .
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Table 1: Means and standard deviations of )̂(1 ΣR , the ratio of estimated to true value-at-risk
assuming that the trader maximizes the bias in the estimated value-at-risk. The standard deviations
are in parentheses.  The distributions were estimated using 1000 simulated realizations of )̂(1 ΣR .

Dimension of Covariance Matrix (K)
Number of

observations used to
estimate covariance

matrix (N)
10 20 50 100

exponential weighting
with λ = .94 and

N = 1005

0.551
(0.047)

0.372
(0.031)

0.131
(0.011)

    0.029
   (0.002)

    50 0.606
(0.053)

0.405
(0.042)

  100 0.725
(0.039)

0.586
(0.032)

0.312
(0.023)

  200 0.809
(0.029)

0.710
(0.025)

0.518
(0.019)

0.306
(0.014)

  500 0.879
(0.019)

0.817
(0.016)

0.697
(0.013)

0.563
(0.011)

1000 0.915
(0.013)

0.871
(0.012)

0.786
(0.009)

0.692
(0.008)

                                                  
5 When K = 100,  N = 200 observations were used.
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Table 2:  Percentiles of the distributions of )̂(1 ΣR , the ratio of estimated to true value-at-risk
assuming that the trader maximizes the bias in the estimated value-at-risk. The distributions were
estimated using 1000 simulated realizations of )̂(1 ΣR .

Dimension of Covariance Matrix (K)
Number of observations

used to estimate
covariance matrix (N)

Percentile 10 20 50 100

exponential weighting
with λ = .94 and

N = 1006

min.
10th

25th

50th

75th

90th

max.

0.406
0.490
0.520
0.554
0.581
0.612
0.696

0.277
0.333
0.351
0.374
0.394
0.409
0.481

 0.092
0.117
0.124
0.132
0.139
0.145
0.164

0.022
0.026
0.027
0.029
0.030
0.032
0.036

    50 min.
10th

25th

50th

75th

90th

max.

0.424
0.539
0.571
0.607
0.643
0.674
0.760

 0.220
0.352
0.378
0.405
0.433
0.456
0.536

  100 min.
10th

25th

50th

75th

90th

max.

0.592
0.675
0.700
0.728
0.754
0.774
0.864

0.485
0.543
0.563
0.588
0.609
0.627
0.676

0.221
0.282
0.298
0.312
0.328
0.342
0.377

  200 min.
10th

25th

50th

75th

90th

max.

0.695
0.772
0.791
0.810
0.829
0.846
0.884

0.611
0.680
0.693
0.712
0.727
0.740
0.781

0.464
0.494
0.506
0.519
0.531
0.543
0.569

 0.255
0.288
0.297
0.306
0.315
0.323
0.351

  500 min.
10th

25th

50th

75th

90th

max.

0.783
0.855
0.866
0.880
0.892
0.903
0.931

0.767
0.795
0.805
0.818
0.828
0.836
0.861

 0.643
0.681
0.688
0.697
0.706
0.713
0.74

0.527
0.548
0.556
0.563
0.571
0.577
0.594

1000 min.
10th

25th

50th

75th

90th

max.

0.869
0.899
0.907
0.915
0.924
0.932
0.966

0.829
0.856
0.863
0.871
0.879
0.886
0.908

0.751
0.774
0.781
0.787
0.793
0.798
0.812

0.666
0.682
0.687
0.693
0.698
0.702
0.714

                                                  
6 When K = 100, N = 200 observations were used.
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Table 3:  Mean and standard deviation of the distributions of )̂(2 ΣR , the ratio of estimated to
“true” value-at-risk assuming that the trader maximizes expected return subject to a constraint on
the estimated value-at-risk. The distributions were estimated using 1000 simulated realizations of

)̂(2 ΣR .  The standard deviations are in parentheses.

Dimension of Covariance Matrix (K)
Number of

observations used to
estimate covariance

matrix (N)
10 20 50 100

exponential weighting
with λ = .94 and

N = 1007

0.742
(0.102)

0.541
(0.075)

0.206
(0.032)

0.046
(0.007)

    50 0.814
(0.095)

0.609
(0.092)

  100 0.905
(0.070)

0.805
(0.071)

0.497
(0.061)

  200 0.954
(0.050)

0.901
(0.051)

0.753
(0.048)

0.503
(0.045)

  500 0.981
(0.032)

0.959
(0.031)

0.902
(0.033)

0.804
(0.031)

1000 0.991
(0.022)

0.981
(0.022)

0.951
(0.023)

0.901
(0.023)

                                                  
7 When K = 100, N = 200 observations were used.
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Table 4:  Percentiles of the distributions of )̂(2 ΣR , the ratio of estimated to “true” value-at-risk
assuming that the trader maximizes expected return subject to a constraint on the estimated value-
at-risk. The distributions were estimated using 1000 simulated realizations of )̂(2 ΣR

Dimension of Covariance Matrix (K)
Number of observations

used to estimate
covariance matrix (N)

Percentile 10 20 50 100

exponential weighting
with λ = .94 and

N = 1008

min.
10th

25th

50th

75th

90th

max.

0.466
0.614
0.671
0.736

0.8100
.876

1.103

0.348
0.446
0.488
0.534
0.589
0.641
0.793

 0.117
0.166
0.184
0.204
0.227
0.248
0.316

0.029
0.038
0.041
0.045
0.050
0.054
0.083

    50 min.
10th

25th

50th

75th

90th

max.

0.545
0.698
0.747
0.809
0.877
0.939
1.188

 0.376
0.489
0.547
0.608
0.666
0.731
0.911

  100 min.
10th

25th

50th

75th

90th

max.

0.669
0.819
0.858
0.906
0.951
0.995
1.144

0.601
0.716
0.756
0.800
0.850
0.899
1.050

0.339
0.423
0.457
0.494
0.540
0.580
0.702

  200 min.
10th

25th

50th

75th

90th

max.

0.800
0.891
0.918
0.954
0.986
1.014
1.152

0.754
0.834
0.869
0.899
0.935
0.964
1.075

0.597
0.693
0.720
0.753
0.786
0.813
0.939

0.375
0.445
0.471
0.502
0.535
0.560
0.670

  500 min.
10th

25th

50th

75th

90th

max.

0.879
0.938
0.959
0.982
1.001
1.021
1.101

0.869
0.920
0.937
0.959
0.980
1.000
1.064

0.789
0.859
0.880
0.902
0.926
0.945
1.007

0.707
0.764
0.782
0.804
0.825
0.843
0.918

1000 min.
10th

25th

50th

75th

90th

max.

0.925
0.963
0.976
0.991
1.006
1.021
1.068

0.914
0.953
0.966
0.982
0.997
1.011
1.054

0.862
0.922
0.935
0.950
0.965
0.981
1.018

0.797
0.873
0.886
0.902
0.917
0.929
0.973

                                                  
8 When K = 100, N = 200 observations were used.
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Table 5:  Mean and standard deviation of the distributions of )̂(3 ΣR , the ratio of estimated to
“true” value-at-risk assuming that the trader selects a preferred portfolio subject to a constraint on
the estimated value-at-risk.  The standard deviations are in parentheses. The distributions were
estimated using 1000 simulated realizations of )̂(3 ΣR .

Dimension of Covariance Matrix (K)
Number of

observations used to
estimate covariance

matrix (N)
10 20 50 100

exponential weighting
with λ = .94 and

N = 1009

0.868
(0.101)

0.779
(0.085)

0.655
(0.050)

0.583
(0.026)

    50 0.912
(0.093)

0.831
(0.084)

  100 0.953
(0.070)

0.908
(0.067)

0.799
(0.055)

  200 0.978
(0.047)

0.955
(0.048)

0.889
(0.046)

0.800
(0.039)

  500 0.992
(0.032)

0.982
(0.031)

0.953
(0.030)

0.907
(0.030)

1000 0.997
(0.022)

0.991
(0.023)

0.976
(0.022)

0.952
(0.022)

                                                  
9 When K = 100, N = 200 observations were used.
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Table 6:  Percentiles of the distributions of )̂(3 ΣR , the ratio of estimated to “true” value-at-risk
assuming that the trader selects a preferred portfolio subject to a constraint on the estimated value-
at-risk. The distributions were estimated using 1000 simulated realizations of )̂(3 ΣR .

Dimension of Covariance Matrix (K)
Number of observations

used to estimate
covariance matrix (N)

Percentile 10 20 50 100

exponential weighting
with λ = .94 and

N = 100

min.
10th

25th

50th

75th

90th

max.

0.599
0.751
0.791
0.823

0.9301
.001

1.267

0.348
0.446
0.488
0.534
0.589
0.641
0.793

 0.524
0.596
0.618
0.649
0.686
0.721
0.830

0.512
0.552
0.564
0.581
0.598
0.616
0.681

    50 min.
10th

25th

50th

75th

90th

max.

0.619
0.792
0.848
0.910
0.974
1.035
1.284

 0.593
0.725
0.771
0.826
0.887
0.942
1.100

  100 min.
10th

25th

50th

75th

90th

max.

0.766
0.860
0.908
0.952
1.002
1.041
1.210

0.693
0.822
0.863
0.906
0.953
0.995
1.149

0.657
0.730
0.769
0.795
0.836
0.870
1.009

  200 min.
10th

25th

50th

75th

90th

max.

0.815
0.919
0.946
0.977
1.007
1.039
1.138

0.778
0.891
0.923
0.955
0.989
1.016
1.100

0.749
0.831
0.857
0.888
0.920
0.948
1.028

0.681
0.750
0.776
0.800
0.824
0.849
0.930

  500 min.
10th

25th

50th

75th

90th

max.

0.889
0.952
0.971
0.992
1.013
1.033
1.089

0.866
0.941
0.961
0.982
1.002
1.023
1.075

0.865
0.914
0.931
0.952
0.973
0.992
1.048

0.814
0.869
0.885
0.907
0.927
0.946
1.003

1000 min.
10th

25th

50th

75th

90th

max.

0.914
0.967
0.982
0.996
1.009
1.025
1.062

0.924
0.962
0.976
0.989
1.005
1.022
1.055

0.880
0.949
0.961
0.976
0.991
1.005
1.037

0.878
0.924
0.938
0.952
0.966
0.980
1.018
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